Contents

Affiliations
BWH | Brigham and Women’s Hospital
MGH | Massachusetts General Hospital
MEE | Massachusetts Eye and Ear
HMS | Harvard Medical School

6 Welcome
11 Steering Committee
14 Sponsors
16 Gene and cell therapy at a crossroads
24 Mass General Brigham Innovation
26 Innovation Growth Board
28 Commercialization Council
45 Planning Committee
47 2022 World Medical Innovation Forum
Reimagining treatment of genetic diseases

Novartis Gene Therapies is reimagining medicine to transform the lives of people living with rare genetic diseases. Utilizing cutting-edge technology, we are working to turn promising gene therapies into proven treatments.

Novartis Gene Therapies is proud to sponsor the 2021 World Medical Innovation Forum.
Reimagining treatment of genetic diseases

Novartis Gene Therapies is reimagining medicine to transform the lives of people living with rare genetic diseases. Utilizing cutting-edge technology, we are working to turn promising gene therapies into proven treatments.

Novartis Gene Therapies is proud to sponsor the 2021 World Medical Innovation Forum.
Welcome to the seventh annual World Medical Innovation Forum.

This year we gather to discuss the extraordinary opportunities in gene and cell therapy and the profound impact they will have on medicine. In more than thirty sessions over the course of three days, Mass General Brigham’s Harvard faculty, industry experts and leading investors and entrepreneurs will explore the technologies and challenges of gene and cell therapy as we continue to bring life-changing breakthroughs to our patients and millions around the world.

The World Medical Innovation Forum was established to reaffirm the importance of collaborative innovation—academia, industry and government working together to create solutions for medicine’s great challenges. Our goal is to provide actionable insights for Forum participants. We are grateful to the nearly 200 senior executives, investors, Harvard clinicians and investigators who will share their perspectives as speakers.

We welcome thousands of audience participants from nearly every state and dozens of countries around the globe, and we are grateful to our many sponsors representing some of the most innovative companies in health care. Our Steering Committee and Planning Team has devoted countless hours and made outstanding contributions to this year’s program. We recognize our Co-chairs Nino Chiocca, MD, PhD, Neurosurgeon-in-Chief and Chairman, Neurosurgery, Brigham and Women’s Hospital; Harvey W. Cushing Professor of Neurosurgery, Sue Slaugenhaupt, PhD, Scientific Director, Mass General Research Institute; Professor, Neurology, Ravi Thadhani, MD, CAO, Mass General Brigham; Professor, Medicine and Faculty Dean, and Luk Vandenberghe, PhD, Grousbeck Family Chair, Gene Therapy, Massachusetts Eye and Ear; Associate Professor, Ophthalmology for all their contributions.

We hope that you will join us next year in-person on May 2-4, 2022 when we reconvene to continue exploring the transformations in gene and cell therapy.

Thank you for joining us for this year’s event.
Thank you for joining us. This year’s Forum features the executives, investors, clinicians, entrepreneurs and decision makers who will transform the application of gene and cell therapies to the clinic. Our enduring goal remains to provide an environment where principals can directly share their insights and priorities. This is an exciting time.

The Forum is brought to you by Innovation, the global business development arm of Mass General Brigham. Its mission is the commercial application of the breakthroughs and unique capabilities of the system’s 6200 Harvard faculty—bringing benefits to patients worldwide and generating new resources to further the nation’s largest academic research enterprise in bringing breakthroughs to patients. Our work continues as we help to collaboratively shape the care of the future.

We express our deep appreciation to the many individuals who made this Forum possible and are particularly grateful to our speakers for sharing their passion, expertise and unique perspectives. Generous support by our Presenting sponsor Novartis, Stakeholder sponsors Bayer and GE Healthcare, Strategic sponsors Astellas, Biogen FujiFilm, and Collaborators Amplifybio, Boston Scientific, Canon, Catalent, InterSystems, NLVC, One Medical, Recon Strategy, Siemens Healthineers, ThermoFisher and Vertex—underpins this event.

Many thanks to the Steering Committee members whose insights made the Forum possible and the Planning Team’s dedicated work.

Enjoy the Forum and we look forward to seeing you in person May 4-6, 2022 in Boston!

Nino Chiocca, MD, PhD
Neurosurgeon-in-Chief and Chairman, Neurosurgery, BH; Harvey W. Cushing Professor of Neurosurgery, HMS (Co-Chair)

Susan Slaugenhaupt, PhD
Scientific Director, Mass General Research Institute, MGH; Professor, Neurology, HMS (Co-Chair)

Ravi Thadhani, MD
CAO, Mass General Brigham; Professor of Medicine and Faculty Dean for Academic Programs, HMS (Co-Chair)

Luk Vandenberghe, PhD
Grousbeck Family Chair in Gene Therapy, Massachusetts Eye and Ear; Associate Professor, Ophthalmology, HMS (Co-Chair)
Driven to provide transformative therapies. Bayer is building robust therapy platforms in cell and gene therapies to translate their potential into tangible treatments for patients.
to provide transformative therapies.

Bayer is building robust therapy platforms in cell and gene therapies to translate their potential into tangible treatments for patients.
Many thanks to the members of the Steering Committee for their leadership in shaping the Forum agenda, identifying speakers and securing sponsors.
BECAUSE M.D. DOESN’T STAND FOR MASTER OF DATA.

At GE Healthcare, we believe technology should work as intelligently as the people who rely on it. So, when we put the tools into the hands of professionals, they can do what’s best for their patients and hospitals.
Technology that produces better outcomes, just another way GE Healthcare is Intelligently Efficient.

Learn more at www.gehealthcare.com/efficiency
@gehealthcare | #intelligentlyefficient
Novartis Gene Therapies
Bannockburn, Illinois

Novartis Gene Therapies (formerly AveXis) is reimagining medicine to transform the lives of people living with rare genetic diseases. Utilizing cutting-edge technology, we are working to turn promising gene therapies into proven treatments, beginning with our transformative gene therapy for spinal muscular atrophy (SMA) and continuing with our robust AAV-based pipeline, which includes treatments for Rett syndrome and Friedreich’s ataxia. We are powered by the world’s largest gene therapy manufacturing footprint, enabling us to bring gene therapy to patients around the world at quality and scale.

The 2021 World Medical Innovation Forum was made possible through the sponsorship of some of health care's most important companies.
Stakeholder

Bayer
Leverkusen, Germany

Bayer is a global enterprise with core competencies in the Life Science fields of health care and agriculture. Its products and services are designed to benefit people and improve their quality of life. At the same time, the Group aims to create value through innovation, growth and high earning power. Bayer is committed to the principles of sustainable development and to its social and ethical responsibilities as a corporate citizen. In fiscal 2016, the Group employed around 115,200 people and had sales of EUR 46.8 billion. Capital expenditures amounted to EUR 2.6 billion, R&D expenses to EUR 4.7 billion. These figures include those for the high-tech polymers business, which was floated on the stock market as an independent company named Covestro on October 6, 2015. For more information, go to www.bayer.us.

bayer.com

GE Healthcare
Chicago, IL

Harnessing data and analytics across hardware, software and biotech, GE Healthcare is the $19 billion healthcare business of GE (NYSE:GE). As a leading provider of medical imaging equipment, with a track record of more than 100 years in the industry and more than 50,000 employees across 100 countries, we transform healthcare by delivering better outcomes for providers and patients. Follow us on Facebook, LinkedIn, and Twitter or The Pulse for latest news.

gehealthcare.com

Strategic

Astellas
Westborough, MA
South San Francisco, CA
astellas.com

Biogen
Cambridge, MA
biogen.com

Fujifilm
Tokyo, Japan
lifesciences.fujifilm.com

Collaborator

[Logos of various companies]
Gene and cell therapy at a crossroads

After glimpsing the promise of gene and cell therapy, Mass General Brigham researchers are now enhancing the technology to drive new treatments for rare and common diseases.

Replacing defective genes or cells with healthy ones has been a goal of modern medicine for decades. And while that aspiration may have seemed simple in principle, the practical path toward realization has been longer and more complex than ever imagined. But now, the initial wave of gene and cell therapies has reached the clinic, with remarkable health benefits for a subset of patients that affirms the potential of these precision medicines for more widespread applications. With scores of gene and cell therapies now under development, the field stands at a major crossroads.

At Mass General Brigham, our faculty are at the forefront of this extraordinary revolution. As part of a world-leading healthcare system that spans the full spectrum of the biomedical research enterprise and works collaboratively with industry to fuel innovation, Mass General Brigham scientists and physicians are working to bring the next generation of gene and cell therapies to the clinic. We highlight a few of their stories here, ranging from rare, genetic diseases to more common conditions that lack effective treatments.
Driven to solve devastating rare diseases

Susan Slaugenhaupt, PhD, the Scientific Director of the Mass General Research Institute, first began working on a rare genetic disease called mucolipidosis IV (ML4) in the late 1990’s as a junior faculty member at MGH. At the time, very little was known about the condition, which results in early motor and cognitive delays, followed by loss of sight, and eventually, death, often in the third or fourth decade of life. In 2000, Slaugenhaupt and her colleagues made a transformative discovery: they identified the culprit gene. That gave them a critical handle on the molecular roots of the disease, one of about 40 so-called lysosomal disorders that together represent the most common cause of neurodegenerative disease in children. Still, there remained many questions about the biology of ML4 and if — and how — a gene therapy strategy should be crafted.

“This is a very slowly progressing neurological disease, which, from a research perspective makes it a very difficult nut to crack,” said Slaugenhaupt, who is also a professor of neurology at HMS. “We’re committed to cracking it because of our deep relationship with the ML4 patients and their families.”

Yulia Grishchuk, PhD, an assistant professor of neurology at MGH, who trained as a postdoctoral fellow in Slaugenhaupt’s lab, is now carrying the project forward in her own lab. Her focus: to not only unlock the biology of the disease but also fix it.

In 2016, she began developing a gene therapy approach for treating ML4. Now, after several years of rigorous pre-clinical studies, Grishchuk and her colleagues are looking for an industry partner to help carve a path toward clinical translation.

“Overall, working in the rare disease space has posed hurdles at every level: getting grants, publishing papers, and finding commercial partners to collaborate with us and help sustain the translational work,” said Grishchuk. Despite these hurdles, she remains deeply focused on studying ML4 and getting an effective treatment to the patients who need it.

“I started working on ML4 because of its underlying biology and my own background in lysosomes and neurodegeneration,” said Grishchuk. “But after getting to know the ML4 community and the patients who suffer from the disease, they are what drive me.”

Jeannie Lee, MD, PhD, a molecular biologist at MGH and professor of genetics at Harvard Medical School, is studying another devastating rare disease, known as Rett syndrome. She and her colleagues are pioneering a novel form of epigenetic therapy for the condition, which is a rare, X-linked disorder that affects roughly 1 in 10,000 girls. Rett syndrome is particularly devastating because the girls appear normal for the first year or two of life, and then begin to deteriorate rapidly, losing language and motor skills, and developing behavioral and cognitive difficulties. Eventually, they require constant, lifelong care. Unfortunately, there are no treatments for these patients.
The gene responsible for Rett syndrome is called Mecp2, and affected girls carry one defective copy and one healthy copy. Ordinarily, that healthy copy might suffice, but since it sits on the X-chromosome, it is rendered inactive about half the time. That's because females randomly inactivate one of their X chromosomes in cells throughout the body as a way to cope with the double dose of genes from the two X chromosomes — males, by comparison, have just one X chromosome. So, in females with Rett syndrome, roughly 50 percent of their cells allow the healthy copy of Mecp2 to remain active, while the other 50 percent choose the damaged copy — an unlucky role of the dice that sets the disease in motion.

"Mecp2 is used within the cells that make it, so while some cells have a fully functioning gene, their activity can't help other cells in which the healthy copy of Mecp2 is inactive," explained Lee.

She has studied X-inactivation for 25 years and her laboratory discovered many of the core molecular components. Lee and her colleagues realized that the answer to treating Rett lies in the bodies of the affected girls. "In the cells that are sick, there is a normal copy of Mecp2, it's just locked up on the inactive X chromosome," said Lee. "But what if we could reactivate it?"

That reversal requires a novel kind of gene-based therapy, known as an epigenetic therapy, which relies on two key elements: an antisense oligonucleotide that targets one of the essential factors within the X-inactivation machinery and silences it, and an inhibitor of an epigenetic process known as DNA methylation. Together, these factors can help target Mecp2 and turn it back on. "What we've learned is that it doesn't take 100 percent of Mecp2 function to have an impact, based on various mouse studies, so even just a little bit of reactivation might make a big difference for Rett patients."

Lee and her colleagues have spent several years developing and vetting their approach in animal models and are now looking for an industry partner to embark on clinical translation. They are also working to adapt their approach for other X-linked disorders. "We're pressing ahead," said Lee. "We know we can get this therapeutic cocktail to work in human cells. Now the question is can we get it to work in Rett patients."
Toward gene therapies for hearing loss

Luk Vandenberghe, PhD, the Grousbeck Family Chair of Gene Therapy at Massachusetts Eye and Ear and an Associate Professor of Ophthalmology at HMS, has built his career studying one of the molecular workhorses of gene therapy, the adeno-associated virus (AAV). Although this viral vector is the predominant delivery agent for the handful of gene therapies now used in the clinic, its biology is not deeply understood.

“It really is a black box therapeutic,” said Vandenberghe. “We don’t yet know why different AAVs do what they do.”

To close these knowledge gaps, his lab has been systematically comparing various AAVs found in nature and designing new ones from first principles using computational tools. Several years ago, the researchers discovered that one of these in silico AAVs infected an unexpected group of cells: the sensory cells in the inner ear, called hair cells. These cells carry out highly specialized functions in the ear that are essential for normal hearing. When hair cells malfunction or degenerate, the result is hearing loss and eventually, total deafness.

The unusual affinity of the Vandenberghe's computer-generated virus, known as Anc80, meant that the researchers could uniquely target hair cells with gene therapies. “Hearing is one of our major forms of communication with the outside world,” said Vandenberghe. “Unfortunately, its loss can be very debilitating and isolating.”

While there have been some recent breakthroughs in treating hearing loss, such as cochlear implants, “these seem fairly rudimentary for 21st century biomedicine,” he said.

Now, Vandenberghe and his colleagues are applying their viral discoveries toward the development of gene therapies for hearing loss. They are beginning with rare genetic forms of hearing loss, such as those due to mutations in a gene called otoferlin as well as other genes. The team hopes to begin clinical trials early next year.

Vandenberghe believes the environment at MGB helps propel his work. “We often underestimate the complementarity that exists within this healthcare system,” he said. “MGB is arguably the largest organization of its kind and it really goes from soup to nuts — from basic research to clinical care. For scientists, it’s like a playground, and the challenge is ours to figure out how to best use it to serve patients.”
'Moving the needle’ for glioblastoma

Glioblastoma is the most common type of brain cancer in adult patients. Unfortunately, its outlook is too often grim. Most patients die within 12 to 18 months of diagnosis. “We really haven’t moved the needle for glioblastoma in the last 30 years,” said Khalid Shah, PhD, who is the Vice Chair of Neurosurgery and directs the Center for Stem Cell Therapeutics and Imaging at Brigham Health. “We’re still treating patients with chemo and radiation, and eventually, these tumors just come back — something has to change.”

Now something is changing. Various teams across MGB are harnessing the tools of gene and cell therapy to develop novel treatments for glioblastoma. For example, Shah and his colleagues are wielding cancer cells as weapons against themselves. Their work draws inspiration from a surprising discovery nearly two decades ago, which found that cancer cells that have spread to distant sites in the body can find their way back to the original tumor. Shah’s team has taken this re-homing concept and, with the power of CRISPR genome editing technologies to molecularly rewire patients own tumor cells, designed the cells to be cancer seekers and slayers. Now, Shah’s group has enhanced these cells, giving them dual cancer-killing and immunomodulatory properties, and are gearing up to test their experimental approach in a phase one clinical trial.

“What the glioblastoma field needs is a cell therapy that not only kills tumor cells, but also gives the body long-term immunity against the cancer so it doesn’t return,” said Shah, who is also a professor at HMS. “That’s what we are building.”

Marcela Maus, MD, PhD and her colleagues are also working on a novel cell therapy. Their focus: developing next-generation CAR-T technologies that can target solid tumors like glioblastoma. CAR-T cells, which Maus’ team helped pioneer, first entered the clinic in 2017. The cells are created using patients’ own immune cells and are genetically engineered in the laboratory to give them therapeutic powers. They’ve proven remarkably potent for some forms of difficult-to-treat blood cancers, enabling some patients to survive for years cancer-free. Now, Maus has enhanced the cells, tweaking them to target not just one, but two molecules on glioblastoma cells. Such bispecificity should make the CAR-T cells better able to destroy solid tumors. The team is preparing to launch clinical trials later this year.

“At Mass General Brigham, we’re incredibly lucky to have such amazing scientific and clinical talent right here,” said Maus, who is Director of Cellular Immunotherapy at the MGH Cancer Center and an associate professor of medicine at HMS. “We have all the talent we need to complete the therapeutic lifecycle — to sketch an idea on the whiteboard, test it in preclinical models, and then collaborate with colleagues in the hospital to bring it to patients.”

Another Mass General Brigham team is also working on a new gene and cell therapy strategy to target glioblastoma. Nino Chiocca, MD, PhD, Neurosurgeon-in-Chief and Chairman of Neurosurgery at BWH, is designing specialized cancer-killing viruses to kill these tumors. Such oncolytic viruses have proven to be quite effective against melanoma, and now Chiocca and his colleagues are adapting them to target glioblastoma. Part of the enthusiasm for this approach lies in the observation that oncolytic viruses help recruit certain immune cells into glioblastoma tumors, transforming them from immunologically cold to hot. This transformation is critical for enabling tumors to respond to cancer immunotherapies, like checkpoint inhibitors. Now, in addition to testing oncolytic viruses in clinical trials, Chiocca’s team will also explore potential combinations with immunotherapy drugs.

“As scientists, we do a lot of research in the lab, but it rarely reaches patients,” said Chiocca, who is also the Harvey W. Cushing Professor of Neurosurgery at HMS. “It’s very exciting to see these potential therapies that could really make a difference for glioblastoma.”
Rebuilding the brain in Parkinson’s disease

Parkinson’s disease affects some 10 million people worldwide. The disease emerges because of a shortage of dopamine, an important signaling molecule for neurons in the brain that helps control movement. The dopamine-producing neurons slowly degenerate and die, for reasons that are not entirely clear but likely involve a mix of genes and environmental factors. Although drugs can help restore dopamine levels, they often cause a range of side effects and are often not effective in patients with advanced disease. But what if it were possible to replace the lost dopamine-producing cells?

“That idea sounds simple in theory but it’s actually quite complicated in practice,” said Bob Carter, MD, PhD, Chair of the Department of Neurosurgery at Mass General and the William and Elizabeth Sweet Professor of Neurosurgery at HMS. For several years, he has collaborated with Kwang-Soo Kim, PhD, Director of the Molecular Neurobiology Laboratory at McLean Hospital and Professor of Psychiatry at HMS, and other colleagues at Mass General and Dana-Farber Cancer Institute to devise a potential cell replacement therapy for Parkinson’s disease. Various other groups within the MGB system are pursuing similar efforts.

The concept developed by Carter’s team involves taking a patch of skin cells from a Parkinson’s patient, reprogramming them in the laboratory to become dopamine-producing neurons, and then surgically implanting them into the patient’s brain. About four years ago, they tested their approach in a single Parkinson’s patient, publishing the results of this “N of 1” study in the New England Journal of Medicine last May. Now, they are working to refine their method and preparing to launch a phase 1/2 clinical trial later this year or in early 2022.

“I’ve dreamed about gene and cell therapy since I was a postdoc,” said Carter. “And now it’s moving one step closer to the clinic.”

He added, “I’m incredibly excited about the potential of this experimental therapy for restoring function to Parkinson’s patients. And if the cell therapy platform we’re developing proves successful, it could also spur the development of similar therapies for other neurodegenerative disorders.”
WORLD MEDICAL INNOVATION FORUM

MAY 19.

GENE AND CELL THERAPY

TRANSLATING PROMISE TO FRONT LINES

NEW ERA OF MEDICINE

ECONOMICS

SYSTEMIC COMPLEXITY

MANUFACTURING TO REGULATORY

SCIENTIFIC DISCOVERY

ABOUT WMIF

ECOSYSTEM IS LARGE

DYING NETWORK

GLOBAL GCT LEADERS

COLLABORATIVE INNOVATION

EXPERT PANELS

COMMITMENT

WORKING TOGETHER

IMPROVE PATIENT LIVES

INDUSTRY & ACADEMIA

PROVIDERS

VENTURE

BUSINESS MODELS

BREADTH OF NEW CHALLENGES

PRICING

BILOGICAL COMPLEXITY

SAFETY

TRIAL DESIGN

PRODUCTION
INNOVATION FORUM '21
20 & 21

CELLO THERAPY

TRANSFORMING THE
GCT TO THE
FUTURE OF MEDICINE

REDUCE
HEALTHCARE
COSTS

ADVANCE THE
QUALITY OF
PATIENT CARE

IMPROVE OUTCOMES
FOR THE WIDESPREAD
& RARE DISEASES

SPEED THE
TRANSLATION OF
GCT BREAKTHROUGHS
TO CLINICAL CARE

EVERY LINK IN
THE HEALTHCARE
VALUE CHAIN IS
REPRESENTED

IT’S VIRTUAL!

WHY ATTEND?

EARLY-STAGE WORK OF
20+ HARVARD MEDICAL
SCHOOL-BASED
PRINCIPAL INVESTIGATORS

TOP 12
DISRUPTIVE GCT
TECHNOLOGIES

FIRST LOOK

TECHNOLOGIES TO
HAVE THE MOST
IMPACT IN THE
NEXT FEW YEARS

SPEAKERS INCLUDE
CEOs, PHARMA, VENTURE
INVESTORS, GOVERNMENT &
HARVARD MEDICAL
FACULTY

MASS GENERAL
BRIGHAM
FORMERLY
PARTNERS HEALTHCARE

MED TECH
START-UPS
PAYERS
GOVERNMENT

VISUALIZED BY INKFACTORYSTUDIO.COM
The World Medical Innovation Forum is brought to you by Mass General Brigham Innovation, the 140-person business development unit responsible for the worldwide commercial application of the capabilities and discoveries of Mass General Brigham’s 74,000 employees.
DEPARTMENTS
• Business Development
• Innovation Operations
• Licensing and Innovation Management
• Market Sectors
• Open Innovation | Alliances and Fellows
• Mass General Brigham Innovation Fund

FUNCTIONS
• Business development
• Company creation
• Industry collaborations
• Innovation management
• International consulting
• Licensing
• Research translation strategy and funding
• Technology marketing
• Venture investing
• Workforce capacity building

Be a part of a team that lives at the cutting edge of medical innovation.

Please contact us if you or someone you know would like to join our diverse team. We have positions for MDs, PhDs, JDs, MBAs and others who have a passion to improve lives by translating the insights and capabilities of our 6000 Harvard faculty. Join us today!
Innovation Growth Board

The Innovation Growth Board provides Mass General Brigham with independent guidance on commercial strategy, market potential and collaborative opportunities.

Joe Cunningham, MD
Managing Director, Santé Ventures

Jean-François Formela, MD
Partner, Atlas Venture

Michael Greeley
General Partner, Flare Capital Partners

Adele Gulfo
Chief of Commercial Development, Roivant Sciences

Julian Harris, MD
Partner, Deerfield

Reid Huber, PhD
Partner, Third Rock Ventures

Andy Hurd
Operating Partner, Cressey and Company

Keith Kerman, MD
Operating Partner and Senior Advisor, The Riverside Company

Adam Koppel, MD, PhD
Managing Director, Bain Capital Life Sciences Fund

John Lepore, MD
SVP, R&D Pipeline, GlaxoSmithKline

Barbara Lubash
Versant Ventures

Amir Nashat, PhD
Managing Partner, Polaris

Ben Pless
CEO, Pivotal Design Labs

Paul Ricci

Russ Richmond, MD

Alfred Sandrock, MD, PhD
EVP and Chief Medical Officer, Biogen

Sue Siegel

Adele Gulfo
Chief of Commercial Development, Roivant Sciences

Julian Harris, MD
Partner, Deerfield

Reid Huber, PhD
Partner, Third Rock Ventures

Andy Hurd
Operating Partner, Cressey and Company

Keith Kerman, MD
Operating Partner and Senior Advisor, The Riverside Company

Adam Koppel, MD, PhD
Managing Director, Bain Capital Life Sciences Fund

John Lepore, MD
SVP, R&D Pipeline, GlaxoSmithKline

Barbara Lubash
Versant Ventures

Amir Nashat, PhD
Managing Partner, Polaris

Ben Pless
CEO, Pivotal Design Labs

Paul Ricci

Russ Richmond, MD

Alfred Sandrock, MD, PhD
EVP and Chief Medical Officer, Biogen

Sue Siegel
The Innovation Fellows Program provides short-term, experiential career development opportunities for future leaders in healthcare focused on accelerating collaborative innovation between science and industry. It facilitates personnel exchanges between Harvard Medical School staff from Mass General Brigham hospitals and participating biopharmaceutical, device, venture capital, digital health, payor and consulting firms. A successful example of open innovation, Fellows and Hosts learn from each other as they collaborate on projects ranging from clinical development to digital health and artificial intelligence to new care delivery models and industry disruption.

We welcome interested Fellow candidates and potential host organizations to learn more at innovation.massgeneralbrigham.org/about/special-programs/innovation-fellows-program

“Boston Pharmaceuticals is dedicated to working with our clinical and scientific collaborators at Mass General Brigham hospitals to develop new medicines. Supporting the next generation of physicians and scientists in our biotech is key to future success for our patients. We are excited to have Mass General Brigham’s faculty join us through the Innovation Fellows Program.”

Craig T. Basson, MD, PhD
Chief Medical Officer, Boston Pharmaceuticals, Inc.
Commercialization Council

The Commercialization Council represents the Mass General Brigham research community—its innovators, translational investigators and leadership.

Paul Anderson, MD, PhD
Chief Academic Officer, BH; SVP, Research, BH; K. Frank Austen Professor of Medicine, HMS

Calum MacRae, MD, PhD
Vice Chair for Scientific Innovation, Department of Medicine, BH; Associate Professor of Medicine, HMS

Mike Gilmore PhD
Chief Science Officer, MEE

Ole Isacson, MD, PhD
Founding Director, Neuroregeneration Institute, McLean; Professor, Neurology, Neuroscience, HMS

Christiana Iyasere, MD
Director, Department of Medicine Innovation Program, MGH; Assistant Professor, Medicine, HMS

Jeff Karp, PhD
Professor, Medicine, BH, HMS

Omid Farokhzad, MD
Director, Center for Nanomedicine, BH; Professor, Anesthesiology, HMS

Harry Orf, PhD
SVP, Research, MGH; Principal Associate, HMS

Maurizio Fava, MD
Psychiatrist-In-Chief, MGH; Slater Family Professor of Psychiatry, HMS

Dennis Orgill, MD, PhD
Vice Chair, Quality Improvement, Surgery and Director, BH Wound Care Center, BH; Professor, Surgery, HMS

Omid Farokhzad, MD
Director, Center for Nanomedicine, BH; Professor, Anesthesiology, HMS

John Fernandez
President, Massachusetts Eye and Ear; President, Ambulatory Care, Mass General Brigham

Mark Poznansky, MD, PhD
Director, Vaccine and Immunotherapy Center, Steve and Debbie Gorlin MGH Research Scholar, Attending Physician, Infectious Diseases Medicine, MGH; Associate Professor, Medicine, HMS

Adam Landman, MD
VP, Chief Information and Digital Innovation Officer, BH, Associate Professor of Emergency Medicine, HMS
AFFILIATIONS

BH | Brigham and Women's Hospital
MGH | Massachusetts General Hospital
HMS | Harvard Medical School
MEE | Massachusetts Eye and Ear

Christine Seidman, MD
Director, Cardiovascular Genetics Center, BH; Thomas W. Smith Professor of Medicine and Genetics, HMS

Brian Seed, PhD
Founding Director, Center for Computational and Integrative Biology, MGH; Professor of Genetics, HMS

Ravi Thadhani, MD
CAO, Mass General Brigham; Professor, Medicine and Faculty Dean, HMS

Mehmet Toner, PhD
Director, BioMicro-ElectroMechanical Systems Center, MGH; Helen Andrus Benedict Professor of Biomedical Engineering, HMS

Susan Slaugenhaupt, PhD
Scientific Director, Research Institute, MGH; Elizabeth G. Riley and Dan E. Smith, Jr. MGH Research Scholar, MGH; Professor, Neurology, HMS

Luk Vandenberghe, PhD
Director, Grousbeck Gene Therapy Center, Massachusetts Eye and Ear; Associate Professor, Ophthalmology, HMS

Rudolph Tanzi, PhD
Vice-Chair of Neurology, Director of Genetics and Aging Research Unit, MGH; Joseph P. and Rose F. Kennedy Professor of Neurology, HMS

Guillermo Tearney
MD, PhD
Remondi Family Endowed MGH Research Institute Chair, MGH; Professor, Pathology, HMS
Astellas is committed to turning innovative science into medical solutions that bring value and hope to patients worldwide. Every day, we work together to address unmet medical needs and help people living with cancer, overactive bladder, heart disease and transplants, among other conditions. We remain dedicated to meeting patients’ needs, and our support for them will never waver.

At Astellas, we’re focused on making changing tomorrow a reality.
Proud to sponsor the World Medical Innovation Forum

At Biogen, we are pioneering new science that takes us deep into the body’s nervous system, and stretches wide across digital networks and patient communities, to better understand, and preserve, the underlying qualities of our essential human nature.
Fujifilm is committed to improving healthcare by applying new technologies designed to fuel the race to cure diseases and advance the field of cell-based therapy. That’s why we’re making critical investments in such emerging treatments as gene therapy and regenerative medicine and expanding our efforts into cell and tissue GMP manufacturing facilities. We’ll never stop leveraging our strengths to pursue innovative solutions in areas such as neurology, cardiology and ophthalmology, tackling the unmet medical needs of patients around the world.

FUJIFILM and Fujifilm Value from Innovation are trademarks of FUJIFILM Corporation. ©2021 FUJIFILM Corporation. All rights reserved.

Follow Fujifilm Life Sciences on LifeSciences.Fujifilm.com
Fujifilm is committed to improving healthcare by applying new technologies designed to fuel the race to cure diseases and advance the field of cell-based therapy. That's why we're making critical investments in such emerging treatments as gene therapy and regenerative medicine and expanding our efforts into cell and tissue GMP manufacturing facilities. We'll never stop leveraging our strengths to pursue innovative solutions in areas such as neurology, cardiology and ophthalmology, tackling the unmet medical needs of patients around the world.

FUJIFILM and Fujifilm Value from Innovation are trademarks of FUJIFILM Corporation. ©2021 FUJIFILM Corporation. All rights reserved.

ACCELERATING THERAPEUTIC BREAKTHROUGHS
Follow Fujifilm Life Sciences on LifeSciences.Fujifilm.com

AmplifyBio specializes in complex study design and execution in all drug and therapy modalities and all relevant animal species. We work with you to build or develop what you need to ensure your products reach commercial success.

Your study has a schedule. We can help.
AmplifyBio specializes in complex study design and execution in all drug and therapy modalities and all relevant animal species. We work with you to build or develop what you need to ensure your products reach commercial success.

Contact us today to learn how we can help you reach your study goals.
833.641.2006 • amplify-bio.com
We share your passion to tackle the toughest healthcare challenges. It’s why we work side-by-side with our partners so we can better understand clinical needs and work collaboratively to address them. We’ll do everything it takes to deliver the innovative solutions that make a more meaningful difference in patients’ lives. This is the commitment behind every product, solution and relationship we build. It’s what we do every day to advance science for patients, for life.

To learn more about what it takes to advance science for life, visit www.bostonscientific.com
Intelligent healthcare
Made possible.
Made For life

Canon’s AI solutions are enhancing the value derived from imaging.

Underpinning our Collaborative imaging approach is a commitment to creating smart solutions, powered by AI, that deliver uncompromised quality and value across the entire care pathway.

Informed healthcare
Our AI solutions have been designed to enhance your clinical confidence with high-quality images and applications that help you make informed treatment decisions in real-time, at the point of delivery.

Fast, tailored treatment
We’re channelling our focus into the provision of AI-powered solutions that enable your patients to get the fast, accurate results they need for a more personalized treatment approach.

Efficient workflows
We have created simple, streamlined AI-driven workflows that optimize resource deployment and ensure your teams have the insights they need to work smarter every day.

Please visit the Canon Medical website for more detail:
https://global.medical.canon/specialties/ai
DEVELOPING CELL & GENE THERAPIES IS SCIENCE. ORCHESTRATING RAPID SCALE-UP IS ART.

Successful cell & gene therapies are built on innovative cellular science, viral technologies and the art of orchestrating fast and scalable manufacturing processes.

Catalent’s proven expertise across multiple cell and viral modalities, development technologies and accelerated scale-up to commercial supply, help turn your science into approved treatments.
HEALTHY DATA MEANS TRUE INTEROPERABILITY AND MORE INFORMED CARE.

Do more with data that is accessible and ready for action. Connect providers, payers, and patients with HealthShare, a suite of solutions for a unified care record. HealthyData.com
Partnering with world-class entrepreneurs developing game-changing healthcare products and services

Founded in 2005

300+ portfolio companies

50+ successful exits

www.nlvc.com
Exceptional primary care, designed for real life.

Including COVID-19 life.

Appointments (in person or remotely), 24/7 on-demand virtual care, and COVID-19 testing.

Atlanta | Austin | Boston | New York | Washington, D.C. | Chicago | Phoenix
Seattle | Portland | SF Bay Area | Los Angeles | Orange County | San Diego
Recon Strategy is a consulting firm focused on strategy in life sciences and healthcare.

We work with biotech, diagnostics, and medical device clients across a broad set of topics from R&D to commercial to corporate strategy, and ranging from single assets to robust portfolios and franchises.

Our experienced partners work closely with our clients to bring a unique blend of clinical, scientific, and business perspectives to every assignment, essential in areas like cell and gene therapy that are pushing the boundaries of our understanding of human biology.
At Siemens Healthineers, our purpose is to enable healthcare providers to increase value by empowering them on their journey toward expanding precision medicine, transforming care delivery, and improving patient experience, all made possible by digitalizing healthcare.

An estimated 5 million patients globally benefit every day from our innovative technologies and services in the areas of diagnostic and therapeutic imaging, laboratory diagnostics, and molecular medicine, as well as digital health and enterprise services.

We are a leading medical technology company with over 120 years of experience and 18,000 patents globally. Through the dedication of more than 50,000 colleagues in 75 countries, we will continue to innovate and shape the future of healthcare.

siemens-healthineers.com/insights
CELL AND GENE THERAPY CONNECTED FROM DEVELOPMENT TO DELIVERY

We’ll help connect you to the solutions, services, and expertise you need to reach your milestones from discovery to commercialization.

Visit thermoster.com/cgt
Vertex aims to create new possibilities in medicine to cure diseases and improve people’s lives.

Cell and genetic therapies represent two rapidly emerging therapeutic modalities with the potential to treat—and even cure—several of the diseases we’re focused on at Vertex. Our team at Vertex Cell and Genetic Therapies (VCGT) has deep experience in cell and gene therapy sciences. Leveraging the best technologies, manufacturing capabilities and expertise with a patients-first philosophy, significant progress is being made in multiple disease areas with unmet need.

To learn more, visit vrtx.com
A special thanks to Innovation’s Planning Committee and Event Team for their unstinting commitment over the last 18 months to create the 2021 World Medical Innovation Forum.

Planning Committee

- **Christopher Coburn**
 Chief Innovation Officer, Mass General Brigham

- **Tracy Doyle**
 Director, Strategic Marketing, Mass General Brigham Innovation

- **Pat Fortune, PhD**
 VP, Market Sectors, Mass General Brigham Innovation

- **Casey Frazier**
 Administrative Coordinator, Mass General Brigham Innovation

- **Michelle Grdina**
 Senior Project Manager, World Medical Innovation Forum, Mass General Brigham Innovation

- **Madeleine Halle**
 Project Specialist, Innovation

- **Beth Molineaux**
 General Manager, Strategic Marketing and Communications, Mass General Brigham Innovation

- **Rachel Napear**
 Venture, Grants, & Funds Engagement, Mass General Brigham Innovation

- **Tim Riley, PhD**
 Market Sector Leader & EIR, Mass General Brigham Innovation

Event Team

- **Big Marker**
 Biomedical Communications
 Nicole Davis, PhD

- **Healthcare Leadership Council**
 Michael Freeman

- **Ink Factory**

- **Jamie Belkin Events**
 Jamie Belkin
 Jerry Mizer
 Amy Pappas
 Lisa Savin

- **Jublia**

- **Mueller Design**
 Eric Castle
 Greg Mueller
 Ashley Volney

- **NPI Audio Visual Solutions**
Mass General Brigham Ventures is an early-stage venture firm focused on investing in life science technologies that emerge from the Mass General Brigham research community.

Founded in 2008, the firm has $500 million in capital under management with proven leadership in both venture capital investing and venture creation.

Our mission is to bring more bench-to-bedside innovations to market to solve unmet medical needs for the benefit of patients worldwide.

www.partnersinnovationfund.com
Join Us in Boston for the 2022 Forum.

Registration is now open.

Special discounted pricing for 2022 is available through June 11th. Register online to take advantage of this special discount.

May 2–4, 2022
worldmedicalinnovation.org